On the Complexity of Semide nite Programs

نویسندگان

  • Lorant Porkolab
  • Leonid Khachiyan
چکیده

We show that the feasibility of a system of m linear inequalities over the cone of symmetric positive semideenite matrices of order n can be tested in mn O(minfm;n 2 g) arithmetic operations with ln O(minfm;n 2 g)-bit numbers, where l is the maximum binary size of the input coeecients. We also show that any feasible system of dimension (m; n) has a solution X such that log kXk ln O(minfm;n 2 g) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semideenite Programming

In semide nite programming one minimizes a linear function subject to the constraint that an a ne combination of symmetric matrices is positive semide nite. Such a constraint is nonlinear and nonsmooth, but convex, so semide nite programs are convex optimization problems. Semide nite programming uni es several standard problems (e.g., linear and quadratic programming) and nds many applications ...

متن کامل

Polynomial Primal Dual Cone Affine Scaling for Semidefinite Programming

Semide nite programming concerns the problem of optimizing a linear function over a section of the cone of semide nite matrices In the cone a ne scaling approach we replace the cone of semide nite matrices by a certain inscribed cone in such a way that the resulting optimization problem is analytically solvable The now easily obtained solution to this modi ed problem serves as an approximate so...

متن کامل

A spectral bundle method with bounds

Semide nite relaxations of quadratic 0-1 programming or graph partitioning problems are well known to be of high quality. However, solving them by primaldual interior point methods can take much time even for problems of moderate size. The recent spectral bundle method of Helmberg and Rendl can solve quite eÆciently large structured equality-constrained semide nite programs if the trace of the ...

متن کامل

Exploiting Sparsity in Primal-dual Interior-point Methods for Semidenite Programming

The Helmberg-Rendl-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro and the Nesterov-Todd search directions have been used in many primal-dual interior-point methods for semide nite programs. This paper proposes an e cient method for computing the two directions when a semide nite program to be solved is large scale and sparse.

متن کامل

Elementary optimality conditions for nonlinear SDPs

An increasing number of recent applications rely on the solution of nonlinear semide nite programs. First and second order optimality conditions for nonlinear programs are widely known today. This paper presents a self-contained generalization of these optimality conditions to nonlinear semide nite programs, highlighting some parallels and some di erences. It starts by discussing a constraint q...

متن کامل

On the Existence of 0/1 Polytopes with High Semidefinite Extension Complexity

In Rothvoÿ [2011] it was shown that there exists a 0/1 polytope (a polytope whose vertices are in {0, 1}) such that any higherdimensional polytope projecting to it must have 2 facets, i.e., its linear extension complexity is exponential. The question whether there exists a 0/1 polytope with high PSD extension complexity was left open. We answer this question in the a rmative by showing that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997